ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
I.N. Sviatoslavsky, E. A. Mogahed, E. T. Cheng, R. J. Cerbone, Y-K. M. Peng, X. R. Wang
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1061-1065
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963754
Articles are hosted by Taylor and Francis Online.
Mechanical, thermal and neutronics design aspects of the toroidal field coil centerpost (CP) for a spherical torus based volumetric neutron source (ST-VNS) are presented. It is being investigated with support of a DOE-SBIR under the direction of TSI Research Inc. of Solana Beach, CA. The ST-VNS is to provide a test bed for developing nuclear technologies, as well as qualifying blanket designs for future fusion reactors. The device is scoped to be capable of staged operation with a neutron wall loading range of 0.5–4.0 MW/m2 as the physics and engineering design assumptions are raised from modest to aggressive levels. Margins in the design are ensured, since operation at 2 MW/m2 neutron wall loading will satisfy the mission of the VNS. The device has a naturally diverted plasma with a major radius of 1.1m, a minor radius of 0.78 m for an aspect ratio of 1.4, an elongation of 3, a triangularity of 0.6 and can be driven with neutral beams (NB) or radio frequency (RF). It utilizes a single turn; unshielded normal conducting CP made of dispersion strengthened (DS) Cu that is 15.5 m long and has a diameter of 0.55 m at the midplane. Resistive heating at the start of operation is 153 MW and increases to 178 MW after three full power years. The effect of transmutation in the Cu causes an increase in the resistivity, producing a shift in the CP current towards the center. The results of this shift on power distribution are reported.