ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
I.N. Sviatoslavsky, E. A. Mogahed, E. T. Cheng, R. J. Cerbone, Y-K. M. Peng, X. R. Wang
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1061-1065
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963754
Articles are hosted by Taylor and Francis Online.
Mechanical, thermal and neutronics design aspects of the toroidal field coil centerpost (CP) for a spherical torus based volumetric neutron source (ST-VNS) are presented. It is being investigated with support of a DOE-SBIR under the direction of TSI Research Inc. of Solana Beach, CA. The ST-VNS is to provide a test bed for developing nuclear technologies, as well as qualifying blanket designs for future fusion reactors. The device is scoped to be capable of staged operation with a neutron wall loading range of 0.5–4.0 MW/m2 as the physics and engineering design assumptions are raised from modest to aggressive levels. Margins in the design are ensured, since operation at 2 MW/m2 neutron wall loading will satisfy the mission of the VNS. The device has a naturally diverted plasma with a major radius of 1.1m, a minor radius of 0.78 m for an aspect ratio of 1.4, an elongation of 3, a triangularity of 0.6 and can be driven with neutral beams (NB) or radio frequency (RF). It utilizes a single turn; unshielded normal conducting CP made of dispersion strengthened (DS) Cu that is 15.5 m long and has a diameter of 0.55 m at the midplane. Resistive heating at the start of operation is 153 MW and increases to 178 MW after three full power years. The effect of transmutation in the Cu causes an increase in the resistivity, producing a shift in the CP current towards the center. The results of this shift on power distribution are reported.