ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Caron Jantzen, E. P. Lee, Per F. Peterson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1047-1052
Inertial Fusion (Poster Session) | doi.org/10.13182/FST98-A11963752
Articles are hosted by Taylor and Francis Online.
Gas dynamics in the heavy-ion inertial-fusion-energy power plant, HYLIFE-II, have been modeled using the code TSUNAMI. Simulations were run and results compared using both ideal-gas and the partial-ionization equations of state. Developed by Zeldovich and Raizer, the partial-ionization model approximates the Saha equation for multiply ionized species in a gas mixture. Results from a cylindrically symmetric simulation indicate an initial, low density, burst of high energy particles enters the final-focus transport beam line within 28 microseconds after the blast, much faster than the proposed 1 millisecond shutter closing time. After approximately 300 microseconds the chamber debris flux levels off to one eighth its peak value and maintains this level until the shutter closes. Uncertainty in IFE target design motivated the adjustment of two target parameters: target mass and the ratio of x-ray to debris kinetic energy. Although initial jet x-ray ablation is considered, neither secondary radiation nor condensation were modeled. Therefore results are conservative.