ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chikara Konno, Fujio Maekawa, Masayuki Wada, Kazuaki Kosako
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1013-1017
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963746
Articles are hosted by Taylor and Francis Online.
An analysis of benchmark experiment on iron for D-T neutrons with JENDL Fusion File and FENDL/E-1.1 suggested that neutron flux above 10 MeV in iron, was underestimated monotonously with depth. Reasons of this underestimation were investigated through various analyses by DORT3.1 with JENDL Fusion Füe, FENDL/E-1.1 and FENDL/E-2.0. The followings for evaluated cross section data on iron around 15 MeV were considered to be possible origins of underestimation of neutron flux above 10 MeV.
1. JENDL Fusion File: Elastic scattering cross sections for forward angles were smaller. Angle-integrated cross section data of (n,2n) and (n,np) reactions were larger.
2. FENDL/E-1.1: Elastic scattering cross sections for forward angles were smaller.
3. FENDL/E-2.0: Angle-integrated cross section data of inelastic scattering and (n,np) reaction were larger.