ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Nano Nuclear, UIUC extend collaboration on Kronos MMR
New York City–based Nano Nuclear Energy has signed a memorandum of understanding with the University of Illinois Board of Trustees, on behalf of the University of Illinois–Urbana-Champaign, to collaborate on the development, construction, and operation of the company’s Kronos MMR (micro modular reactor) as an on-campus research reactor. The new MOU represents the latest aspect of Nano Nuclear’s partnership on the Kronos MMR project with the university, which includes state funding for a manufacturing and research center, to be located in the Chicago suburb of Oak Brook.
Chikara Konno, Fujio Maekawa, Masayuki Wada, Kazuaki Kosako
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1013-1017
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963746
Articles are hosted by Taylor and Francis Online.
An analysis of benchmark experiment on iron for D-T neutrons with JENDL Fusion File and FENDL/E-1.1 suggested that neutron flux above 10 MeV in iron, was underestimated monotonously with depth. Reasons of this underestimation were investigated through various analyses by DORT3.1 with JENDL Fusion Füe, FENDL/E-1.1 and FENDL/E-2.0. The followings for evaluated cross section data on iron around 15 MeV were considered to be possible origins of underestimation of neutron flux above 10 MeV.
1. JENDL Fusion File: Elastic scattering cross sections for forward angles were smaller. Angle-integrated cross section data of (n,2n) and (n,np) reactions were larger.
2. FENDL/E-1.1: Elastic scattering cross sections for forward angles were smaller.
3. FENDL/E-2.0: Angle-integrated cross section data of inelastic scattering and (n,np) reaction were larger.