ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Kumar, H.W. Kugel, G. Ascione
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 991-996
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963742
Articles are hosted by Taylor and Francis Online.
Samples of uranium, thorium, thoriated tungsten, potassium bromide, barium, and strontium were irradiated at TFTR under a ‘new tokamak applications’ initiative launched in 1997. The saturation activity data obtained from data analysis of these measurements is reported. This new addition to the vast experimental database from mixed D-T and D-D neutron irraditions at TFTR offers an invaluable resource for benchmarking of calculations in relation to the design and regulatory licensing of fusion reactors designed specifically around applications like transmutation of actinide and fission product waste, radioisotope production for medical and industrial applications.