ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kokooo, I. Murata, D. Nakano, A. Takahashi, F. Maekawa, Y. Jkeda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 980-984
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963740
Articles are hosted by Taylor and Francis Online.
Benchmark experiments on vanadium and vanadium alloy with D-T neutrons have been done at two angles, 0 degrees and 24.9 degrees, using the slab geometry and the time-of-flight (TOF) method. Data were collected for neutron energies ranging from 50 keV to 15 MeV. For vanadium, measurements were made for three slab thicknesses, i.e., 50.8 mm, 1524 mm, and 254 mm, whereas for the vanadium alloy, measurements were made only for 101.6-mm thickness. The measured neutron spectra were compared with MCNP-4A calculations using evaluated nuclear data from the JENDL-3.2, JENDL Fusion-File(IENDL-FF), FENDL/E-1.0 and European Fusion File veraon-3(EFF-3) libraries. The calculated data show reasonable agreement with the measurement, however, some differences are worth noting. Calculations for a slab thickness of 50.8 mm over the energy range from 0.05 to 0.1 MeV underestimate the measurements by about 40% at an angle of 24.9 degrees, while calculations for the energy range from 0.1 to 1.0 MeV, overestimate the measurements by about 40% at an angle of 0 degrees. Calculations made using the JENDL-FF library show good agreement with measurements for energies greater than 11 MeV. Calculations made using the FENDL/E-1.0 library give smaller results than any of the other three libraries in the energy range from 5 to 11 MeV.