ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kokooo, I. Murata, D. Nakano, A. Takahashi, F. Maekawa, Y. Jkeda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 980-984
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963740
Articles are hosted by Taylor and Francis Online.
Benchmark experiments on vanadium and vanadium alloy with D-T neutrons have been done at two angles, 0 degrees and 24.9 degrees, using the slab geometry and the time-of-flight (TOF) method. Data were collected for neutron energies ranging from 50 keV to 15 MeV. For vanadium, measurements were made for three slab thicknesses, i.e., 50.8 mm, 1524 mm, and 254 mm, whereas for the vanadium alloy, measurements were made only for 101.6-mm thickness. The measured neutron spectra were compared with MCNP-4A calculations using evaluated nuclear data from the JENDL-3.2, JENDL Fusion-File(IENDL-FF), FENDL/E-1.0 and European Fusion File veraon-3(EFF-3) libraries. The calculated data show reasonable agreement with the measurement, however, some differences are worth noting. Calculations for a slab thickness of 50.8 mm over the energy range from 0.05 to 0.1 MeV underestimate the measurements by about 40% at an angle of 24.9 degrees, while calculations for the energy range from 0.1 to 1.0 MeV, overestimate the measurements by about 40% at an angle of 0 degrees. Calculations made using the JENDL-FF library show good agreement with measurements for energies greater than 11 MeV. Calculations made using the FENDL/E-1.0 library give smaller results than any of the other three libraries in the energy range from 5 to 11 MeV.