ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Mahmoud Z. Youssef, Anil Kumar, Mohamed A. Abdou, Chikara Konno, Fujio Maekawa, Yujiro Ikeda
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 953-963
Neutronics Experiments and Analysis (Poster Session) | doi.org/10.13182/FST98-A11963736
Articles are hosted by Taylor and Francis Online.
As part of a collaboration with Japan, the U.S. participated in several fusion integral experiments that simulate the design features of the shielding blanket of the International Thermonuclear Experimental Reactor, ITER. The purpose of these efforts is to resolve the critical issues associated with the neutronics R&D tasks of ITER, among which is the adequacy of the newly developed FENDL-1 database. For that purpose, JAERI has constructed a cylindrical test assembly of dimension 1.2 D × 1.2 L m and made of front multi-layers of SS316 and water with an embedded smaller zone consists of multi-layers of super conducting magnet (SCM) stimulant and SS316. Measured parameters, covering the neutron energy range from 14 MeV down to thermal energy, were taken inside the SS316 and the SCM layers at 9 locations up to a depth of 91.4 cm. In one experiment (Assembly#l), a 1.27 cm B4C + 3.8 cm Pb layer was added in front of the SCM multi-layer zone. This layer is not included in Assembly#2. As in previous experiments, the 14 MeV source is housed inside a source reflector can (20 cm-thick) and located at a distance of 30 cm from the assembly. The U.S. analysis reported here was performed with 175n-42g FENDL/MG-1.0 (multigroup) as well as ENDF/B-VI data using the DORT 2-D code. Analysis was also performed with the Monte Carlo (MC) continuous energy data, FENDL/MC-1.0. The calculated parameters were compared to the following measured data: (a) neutron spectrum below 2 MeV, (b) foil activation rates such as Nb-93(n,2n)Nb-93m, Al-27(n,α)Na-24, In-115(n,n)In-115m, Au-197(n, γ)Au-198, and B-10(n,α)Li-7, (c) fission rate U-235(n,f) and U-238(n,f). (d) gamma-ray spectrum, and (e) gamma-ray heating rate.