ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
D. L. Hillis, J. T. Hogan, P. Andrew, J. Ehrenberg, M. Groth, M. von Hellermann, L.D. Horton, R. Monk, P. Morgan, M. Stamp
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 941-945
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963734
Articles are hosted by Taylor and Francis Online.
Future fusion reactors, like ITER, will rely on an active exhaust system to pump tritium (T) in the divertor and then recirculate it to the fuel stream. Estimation of the T inventory requires a detailed T balance, which determines if T is preferentially enriched relative to D in its pathway from the main plasma to the divertor and pump. On the Joint European Torus (JET), the neutral T concentration in the sub-divertor (pumping plenum and region below the divertor strike point plate) is measured with a modified Penning gauge coupled to a high-resolution spectrometer. In addition, T concentration measurements are made in the plasma edge and strike point region with a spectrometer viewing these regions. The sub-divertor and divertor (region above the strike point plate) T concentration measurements show differences during initial T uptake and retention which are characteristic of wall deposition properties. Since wall retention is one of the factors in calculating the eventual T inventory in a reactor, a detailed study of this process has been undertaken.