ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D.C. Norris, W. M. Stacey, M. Yaksh, S.M. Ghiaasiaan
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 924-929
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963731
Articles are hosted by Taylor and Francis Online.
Heat removal and heat conduction analyses were performed to determine the heat flux limits for a number of possible structural material/coolant combinations: SS316/H2O (5 and 14 MPa), HT-9/H2O (14 MPa), V-4Cr-4Ti/H2O (14 MPa), HT-9/He (15 MPa), and V-4Cr-4Ti/He (15 MPa). A common first-wall design geometry, similar to that of ITER, was used. With H2O coolant and steel, the ASME stress criteria were the most limiting, which constrained the surface heat flux to 0.46 MW/m2 (5 MPa) and 0.41 MW/m2 (14 MPa) for SS316 and to 1.1 MW/m2 for HT-9/H2O (14 MPa). The maximum Be temperature was most limiting for V-4Cr-4Ti/H2O (14 MPa), constraining the heat flux to 1.73 MW/m2. For this first wall geometry, which was optimized for H2O, the He-cooled designs were limited by the 2% pumping power constraint to less than 0.5 MW/m2.
The sensitivity of heat flux limits to maximum allowable material temperatures and to parameters of the model was evaluated.