ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Hatano, S. Suzuki, K. Yokoyama, M. Akiba, J. Ohmori, T. Kuroda, H. Takatsu
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 908-913
Plasma Facing Components Technology (Poster Session) | doi.org/10.13182/FST98-A11963728
Articles are hosted by Taylor and Francis Online.
The objective of this study is to develop joining technology of a plasma facing CFC armor and DSCu heat sink by means of Ag-free brazing and to evaluate its performances under repeated high heat flux. For fabrication of a baffle first wall (FW) composed of dispersion strengthened copper (DSCu) as heat sink and carbon fiber composite (CFC) as amor material, a two-step brazing has been proposed. CFC armor tiles were joined to an oxygen free copper (OFCu) plate in the first step and the OFCu plates joined, in turn, to the DSCu heat sink in the second step. After screening tests, brazing materials of Cu-Mn and Al were selected for the first and the second steps, respectively. A small scale baffle FW mock-up of 400 mm in length, 49 mm in width and 52 mm in thickness was successfully fabricated. By destructive test of a piece with the same materials bonded under the same condition as the mock-up, bondability at each brazing interface was confirmed. Thermal cycle tests were performed with the fabricated mock-up. Test conditions were selected based on thermo-mechanical analyses to simulate the temperature at the brazing interface under ITER operation condition and also higher temperatures with higher heat fluxes for acceleration of thermal cycle tests. The mock-up withstood more than 4600 cycles with heat fluxes of 5–10 MW/m2. From results of the thermal cycle tests, the integrity of CFC/DSCu interface was demonstrated.