ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ken Tomabechi, Yuichi Ogawa, Naoto Sekimura, Yuzo Fukai, Akiyoshi Hatayama, Nobuyuki Inoue, Akira Kohyama, Sei-Ichiro Yamazaki, Seiji Mori
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 863-867
Fusion Blanket and Shield Technology (Poster Session) | doi.org/10.13182/FST98-A11963720
Articles are hosted by Taylor and Francis Online.
The possibility of developing a cost competitive fusion power plant with a water-cooled blanket concept, which has much experience in nuclear power plants, was examined. The new blanket design is based on using reduced activation ferritic steel components and an advanced super-heated steam cycle which is used to realize high thermal efficiency. The high value of thermal efficiency is very effective in reducing the cost of electricity.
The allowable temperature range of the structure material, reduced activation ferritic steel, is assumed to be 350K to 900K based on expectations from the material research and development program. A mixture of lithium oxide pebbles and beryllium pebbles is installed in the breeding zone for high tritium breeding ratio and high thermal conductivity. Mixture ratio of beryllium and lithium-6 enrichment were optimized from the viewpoint of temperature distribution in the breeding zone, achievable tritium breeding ratio and its reduction due to burn up. The reference blanket system has a local tritium breeding ratio of 1.37. The arrangement of cooling channels in the breeding zones and flow rate and inlet temperature of the coolant were also optimized to keep the temperatures of structure materials, breeding materials and coolant in the allowable range. The first wall is cooled by pressurized water at about 570 K. The coolant out of the first wall is led to the breeding zone and starts to boil. The steam is super-heated up to 750 K in the blanket. This high temperature raises the thermal efficiency of the turbine to 41 %.