ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
A. Ying, N. Morley, K. Gulec, B. Nelson, M. Youssef, M. Abdou
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 855-862
Fusion Blanket and Shield Technology (Poster Session) | doi.org/10.13182/FST98-A11963719
Articles are hosted by Taylor and Francis Online.
The attractive features and scientific challenges offered by the liquid wall systems render them strong candidates for investigation in the APEX project[1]. In particular, their high power density capabilities make the fusion reactors economically competitive. In this paper, as part of evolving a practical design based on this evolutionary idea, issues concerning thermalhydraulics of liquid surface first wall/blankets were analyzed. Design approaches as presently envisioned include both liquid films over the solid surface and gravity driven thick liquid jets using lithium and flibe as working fluids. The analyses involved defining liquid systems operating conditions, such as velocity and inlet/outlet temperatures, as well as to calculate free surface temperature so that the evaporation rate from the free surface would not jeopardize plasma operation while maintaining the liquid temperature within the operating windows for high thermal efficiencies. All analyses were performed for a neutron wall load of 10 MW/m2 and its corresponding surface heat flux of 2 MW/m2. The results indicated that high velocities, hard x-ray spectra and turbulent heat transfer enhancement were necessary conditions for keeping flibe first wall temperature low. On the other hand, at velocities of 20 m/s or higher, it appears possible to maintain lithium film evaporation rate below 1020#/m2s in an ARIES-RS type configuration. Nevertheless, present analyses have not uncovered any basic flaws or major shortcomings in the underlying scientific or technical arguments for the concepts. Yet, engineering innovations of how to maintain and control the flow and the associated analyses are still needed.