ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A. Ying, N. Morley, K. Gulec, B. Nelson, M. Youssef, M. Abdou
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 855-862
Fusion Blanket and Shield Technology (Poster Session) | doi.org/10.13182/FST98-A11963719
Articles are hosted by Taylor and Francis Online.
The attractive features and scientific challenges offered by the liquid wall systems render them strong candidates for investigation in the APEX project[1]. In particular, their high power density capabilities make the fusion reactors economically competitive. In this paper, as part of evolving a practical design based on this evolutionary idea, issues concerning thermalhydraulics of liquid surface first wall/blankets were analyzed. Design approaches as presently envisioned include both liquid films over the solid surface and gravity driven thick liquid jets using lithium and flibe as working fluids. The analyses involved defining liquid systems operating conditions, such as velocity and inlet/outlet temperatures, as well as to calculate free surface temperature so that the evaporation rate from the free surface would not jeopardize plasma operation while maintaining the liquid temperature within the operating windows for high thermal efficiencies. All analyses were performed for a neutron wall load of 10 MW/m2 and its corresponding surface heat flux of 2 MW/m2. The results indicated that high velocities, hard x-ray spectra and turbulent heat transfer enhancement were necessary conditions for keeping flibe first wall temperature low. On the other hand, at velocities of 20 m/s or higher, it appears possible to maintain lithium film evaporation rate below 1020#/m2s in an ARIES-RS type configuration. Nevertheless, present analyses have not uncovered any basic flaws or major shortcomings in the underlying scientific or technical arguments for the concepts. Yet, engineering innovations of how to maintain and control the flow and the associated analyses are still needed.