ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
J. Manuel Perlado, Lorenzo Malerba, Tomás Díaz de la Rubia
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 840-847
Inertial Fusion Technology | doi.org/10.13182/FST98-A11963717
Articles are hosted by Taylor and Francis Online.
An extreme condition in Inertial Fusion Energy (IFE) reactors will be the very high neutron dose rate from each burst of high gain targets. The effect of pulsed damage on the structural materials of the reactor chamber needs to be examined and its actual importance carefully assessed.
A first calculation of neutron spectra and intensities in one burst of directly driven target (pR ≈ 4 g.cm−2, 3 Hz) yields, for a ≈ 500 MJ shot of neutrons, a rate of ≈ 7 × 1020 n.s−1, the total time of deposition on the chamber walls being of ≈ 1 μs. This corresponds to a collisional parameter of 0.1 dpa/burst (in Fe), which gives an average damage rate of ≈ 3.8 dpa/year. The evolution in time of collisional damage is also presented.
Our work focuses on cubic silicon carbide (β-SiC) as a base for the next generation of low-activation materials. The Molecular Dynamics (MD) code MDCASK allows the description of the interaction of high energy recoils with the SiC lattice, by using a modification of the many-body semi-empirical inter-atomic Tersoff potential, merged with a repulsive binary potential obtained from ab initio calculations. A new assessment of previous works is presented. Preliminary values of threshold displacement energies are given and the observation of recombination barriers is reported. As a first step for a future intra- and inter-pulse damage study, by means of Kinetic Monte-Carlo (KMC) diffusion calculations, 3 and 5 keV Si-recoil-induced cascade simulations are analysed, discussing excitation and defects' characteristics in both sub-lattices: differences with respect to earlier works are found. Finally, the simulations of accumulations of up to 25 recoils of 500 eV and 1 keV are examined, in order to get a deeper insight into the damage state produced inside the material by intensive and prolonged irradiation in the absence of self-annealing.