ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Paul P.H. Wilson, H. Tsige-Tamirat, Hesham Y. Khater, Douglass L. Henderson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 784-788
Fusion Blanket and Shield Technology | doi.org/10.13182/FST98-A11963709
Articles are hosted by Taylor and Francis Online.
ALARA [Analytic and Laplacian Adaptive Radioactivity Analysis] v1.0,1,2 a new activation code released in January 1998 and developed specifically for the analysis of radioactivity in fusion energy systems, has been validated by comparison to other commonly used activation codes, FISPACT-973 and DKR-Pulsar 2.04 using the International Atomic Energy Agency [IAEA] Fusion Evaluated Nuclear Data Library [FENDL] Calculational Activation Benchmark.5 The solutions to the benchmark problem for both steady-state and pulsed operation have been calculated with all three programs on the same IBM RS/6000 workstation. In addition to comparing the total activity in each of the 44 non-void zones and the isotopic contributions to the activity at specific spatial points, the required computing time has been compared. For the steady state problem, agreement between ALARA and FISPACT-97 for the total activity was within 2.5% in all zones at all cooling times, and within 0.5% in most zones. For both the steady state and pulsed problem, agreement between ALARA and DKR-Pulsar 2.0 was within 1% in all zones and at all cooling times where tritium inventories were not significant. The agreement between ALARA and FISPACT-97 for the individual isotopic inventories in the stainless steel first wall back-plate were within 1% for all dominant isotopes at all cooling times, while the DKR-Pulsar 2.0 results showed some significant discrepancies. The processing time for ALARA is 2/3 of that for DKR-Pulsar 2.0 and less than 1/5 of that for FISPACT-97. This validation exercise proves that ALARA is an accurate and fast computational tool for the calculation of induced activity in fusion power systems.