ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Robert A. Anderl, Robert J. Pawelko, Galen R. Smolik, Richard G. Castro
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 738-744
Safety and Environment | doi.org/10.13182/FST98-A11963702
Articles are hosted by Taylor and Francis Online.
This paper presents the results of experiments and analyses to quantify the chemical reactivity of plasma-sprayed (PS) Be specimens exposed to steam. Test specimens with densities of 94% theoretical density (TD) and 92% TD were prepared by a low-pressure-plasma-spraying (LPPS) technique. Sample density, porosity and specific surface area were measured using immersion density and gas-adsorption techniques. Microstructural characterization was done using optical and electron microscopy. Hydrogen generation rates were obtained from tests of specimens in steam at temperatures from 350 to 1000°C. Below 700°C, hydrogen generation rates for the 94% TD material were somewhat higher than rates for 100% TD Be, but they were substantially lower than rates for the 92% TD Be and for previously tested PS-Be and porous Be. Reaction rate differences correlated with specific surface area differences for the materials tested.