ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE announces awards for three university nuclear education outreach programs
The Department of Energy’s Office of Nuclear Energy has announced more than $590,000 in funding awards to help three universities enhance their outreach in nuclear energy education. The awards, which are part of the DOE Nuclear Energy University Program (NEUP) University Reactor Sharing and Outreach Program, are primarily designed to provide students in K-12, vocational schools, and colleges with access to university research reactors in order to increase awareness of nuclear science, engineering, and technology and to foster early interest in nuclear energy-related careers.
Itacil C. Gomes, Donald L. Smith, Edward T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 706-713
Neutronics Experiments and Analysis | doi.org/10.13182/FST98-A11963697
Articles are hosted by Taylor and Francis Online.
Current designs of fusion-reactor systems seek to use radiation-resistant, low-activation materials that support long service lifetimes and minimize radioactive-waste problems after decommissioning. Reliable assessment of fusion materials performance requires accurate neutron-reaction cross sections and radioactive-decay constants. The problem areas usually involve cross sections since decay parameters tend to be better known. The present study was motivated by two specific questions: i) Why are the 51V(n,np)50Ti cross section values in the ENDF/B-VI library so large (a gas production issue)? ii) How well known are the cross sections associated with producing 7.4times105 y 26Al in silicon carbide by the process 28Si(n,np+d)27Al(n,2n)26Al (a long-lived radioactivity issue)? The energy range 14–15 MeV of the D-T fusion neutrons is emphasized. Cross-section error bars are needed so that uncertainties in the gas and radioactivity generated over the lifetime of a reactor can be estimated. We address this issue by comparing values obtained from prominent evaluated cross-section libraries. Small differences between independent evaluations indicate that a physical quantity is well known while the opposite signals a problem. Hydrogen from 51V(n,p)51Ti and helium from 51V(n,α)48Sc are also important sources of gas in vanadium, so they too were examined. We conclude that 51V(n,p)51Ti is adequately known but 51V(n,np+d)50Ti is not. The status for helium generation data is quite good. Due to recent experimental work, 27Al(n,2n)26Al seems to be fairly well known. However, the situation for 28Si(n,np+d)27Al remains unsatisfactory.