ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Mahmoud Z. Youssef, Neil Morley, Anter El-Azab
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 697-705
Neutronics Experiments and Analysis | doi.org/10.13182/FST98-A11963696
Articles are hosted by Taylor and Francis Online.
Innovative concepts are being explored and evaluated in the Advanced Power Extraction (APEX) study to enhance the capability of removing high power density and surface wall load while satisfying all other blanket functional requirements. The minimum surface and neutron wall load considered is ∼1.5 MW/m2 and 7 MW/m2, respectively, with account taken for peaking factors. Liquid first wall is among the concepts considered in which a flowing layer is introduced from the top of the Tokamak. Liquid lithium, Flibe, and Li17Pb83 are among the candidate materials considered. The objectives of the present work are: (a) determination of the spatial range over which X-ray from the plasma deposits its energy across the protective liquid layer under a realistic spectrum, (b) evaluation of the impact of difference in the neutron moderation among the liquid studied on the volumetric heat deposition rate across the layer as well the structured blanket behind it, and (c) assessment of the percentage of tritium bred only in the liquid layer relative to the total tritium bred in the entire system. In this paper, it is shown that X-ray deposits its energy over a finite depth in the layer; contrary to what have been assumed in previous studies. This assessment gives the correct input source for the thermal hydraulic analysis and leads to a large decrease in the liquid surface temperature. It is shown that: (a) still high heat deposition rate is attainable at the layer surface due to the fraction of the Bremsstrahlung spectrum below ∼80 eV (Li) and ∼200 eV (Flibe) which constitutes only ∼0.4% of the incident spectrum, (b) Flibe is more powerful in moderating neutrons than Li, leading to a factor of 2–9 reduction in the volumetric heating rate (and thermal stresses) across the structured blanket, and (c) the fraction of the total breeding ratio, TBR, attributed only to the convective layer is ∼25% although the liquid layer is only ∼9% of the layer/blanket length.