ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Mahmoud Z. Youssef, Neil Morley, Anter El-Azab
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 697-705
Neutronics Experiments and Analysis | doi.org/10.13182/FST98-A11963696
Articles are hosted by Taylor and Francis Online.
Innovative concepts are being explored and evaluated in the Advanced Power Extraction (APEX) study to enhance the capability of removing high power density and surface wall load while satisfying all other blanket functional requirements. The minimum surface and neutron wall load considered is ∼1.5 MW/m2 and 7 MW/m2, respectively, with account taken for peaking factors. Liquid first wall is among the concepts considered in which a flowing layer is introduced from the top of the Tokamak. Liquid lithium, Flibe, and Li17Pb83 are among the candidate materials considered. The objectives of the present work are: (a) determination of the spatial range over which X-ray from the plasma deposits its energy across the protective liquid layer under a realistic spectrum, (b) evaluation of the impact of difference in the neutron moderation among the liquid studied on the volumetric heat deposition rate across the layer as well the structured blanket behind it, and (c) assessment of the percentage of tritium bred only in the liquid layer relative to the total tritium bred in the entire system. In this paper, it is shown that X-ray deposits its energy over a finite depth in the layer; contrary to what have been assumed in previous studies. This assessment gives the correct input source for the thermal hydraulic analysis and leads to a large decrease in the liquid surface temperature. It is shown that: (a) still high heat deposition rate is attainable at the layer surface due to the fraction of the Bremsstrahlung spectrum below ∼80 eV (Li) and ∼200 eV (Flibe) which constitutes only ∼0.4% of the incident spectrum, (b) Flibe is more powerful in moderating neutrons than Li, leading to a factor of 2–9 reduction in the volumetric heating rate (and thermal stresses) across the structured blanket, and (c) the fraction of the total breeding ratio, TBR, attributed only to the convective layer is ∼25% although the liquid layer is only ∼9% of the layer/blanket length.