ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Matsukawa, Y. Miura, T. Kimura, K. Watanabe, T. Kubota, S. Kawashima
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 684-688
Magnetics and Superconductors (Poster Session) | doi.org/10.13182/FST98-A11963694
Articles are hosted by Taylor and Francis Online.
A vacuum circuit breaker (VCB) is one of the key components that constitute a quench-protection circuit for a superconducting coil. A water-cooled VCB having a continuous high-current carrying-capacity was newly designed and its model test was conducted. The target values of its performance were determined from the viewpoint of application to quench protection for superconducting coils in fusion devices as follows: (1) continuous current-carrying capacity of 25 kA or more, and (2) current interruption rating of 50 kA or more. Since thermally critical parts of the VCB are contacting surfaces of its electrodes, a key issue of the design is how to remove the heat generated on the surfaces in the electrodes from the vacuum area. For heat removal with good efficiency, the VCB was designed to possess a short fixed rod with a large coil outside the vacuum area and a fat movable rod where a water-cooling channel can be bored. Thus the new VCB has an up-down asymmetrical structure having the coil that provides co-axial magnetic field for stabilizing the current interruption property. Thermal characteristics of the VCB were analyzed by computer simulation. In addition, a model of the VCB was fabricated and tested to evaluate the characteristics. At the test of the model VCB, it was proved that the water-cooled VCB with a current-carrying capability of about 18 kA is feasible.