ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Shigeo Yoshida, Isao Murata, Akito Takahashi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 656-660
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963689
Articles are hosted by Taylor and Francis Online.
In the Intense 14 MeV Neutron Source Facility OKTAVIAN of Osaka University, Japan, which produces fusion neutrons by D-T reaction, we have many experience in handling tritium targets and tritiated contaminants. In OKTAVIAN, the transition of tritium concentration in urine and exhaled water of some workers was measured with a liquid scintillation counter for years. Using the measured results between the concentration of tritium in urine and in exhaled water, we have found a simple method to lead excretion parameters in order to estimate the internal exposure dose. The first decreasing term, HTO component, was expressed as a simple exponential function with the measured concentration of HTO in exhaled water. The second and third decreasing terms, OBT component, were expressed as a sum of two exponential functions using the difference between the concentration of HTO in exhaled water and the total tritium concentration in urine in equilibrium. And the excretion function of total tritium in urine can be expressed as a sum of their three exponential decreasing terms. Moreover, without measurements of longer-term, it becomes possible to analyze the longer half-life in OBT component at a short time.