ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoshinori Kawamura, Satoshi Konishi, Masataka Nishi
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 33-40
Technical Paper | doi.org/10.13182/FST04-A423
Articles are hosted by Taylor and Francis Online.
A blanket tritium recovery system that uses an electrochemical hydrogen pump with a protonic conductor membrane is proposed. One of the advantages of this system is the potential for processing the blanket sweep gas without fractionation of hydrogen isotopes and water vapor. In this work, hydrogen in a water molecule is extracted by a hydrogen pump using a Perovskite-type ceramic such as SrCe0.95Yb0.05O3-. The threshold, which corresponds to the energy of H2O decomposition, for hydrogen extraction from the water molecule is 500 to 600 mV at 873 K. The threshold becomes smaller with increases of the partial pressure of the water vapor. In the case of pumping of the H2-H2O mixture gas, transportation of H2 precedes H2O decomposition below the threshold (H2O decomposition voltage), and the threshold becomes larger. In order to process the blanket sweep gas without fractionation of hydrogen isotope and water vapor, comparatively high applied voltage is required.