ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
J.P. Sharpe, M. Bourham, J.G. Gilligan
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 634-639
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963685
Articles are hosted by Taylor and Francis Online.
The SIRENS high heat flux facility at NCSU has been used to generate particulate representative of material mobilized during a hard disruption in a fusion reactor. The electrothermal (ET) plasma source in SIRENS has been found to be suitable for disruption simulation. Particulate generation occurs in both the fusion reactor and the ET source as material mobilized from the plasma-surface interface expands into a large volume. The response of carbon-based material and carbon/metal mixtures to disruption simulation in SIRENS has been studied and the resulting particle size data are presented in this paper. Specific materials investigated include Lexan polycarbonate, graphite grades UTR-22 and ATJ, and combinations of Lexan with each copper, stainless steel 316, tungsten, and aluminum.