ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Sandro Sandri, Luigi Di Pace
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 629-633
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963684
Articles are hosted by Taylor and Francis Online.
In the current design of the ITER cooling system heat exchangers (HXs), the primary water flows in the shell side of the component and the secondary water in the tube bundle and the channel head. This is the inverse of the more classical design previously proposed for this ITER component. The reason for this change is basically the need to reduce the collective dose to the operators working inside the HX channel head. In order to evaluate the effectiveness of this change, the radiological dose accumulated by all the personnel involved in the different working activities connected with the HX operation was assessed. The collective dose was calculated by using a procedure already applied to assess the occupational radiation exposure (ORE) since the end of the ITER conceptual design phase (CDA). Two main sources of radiological dose for the primary heat transfer system (PHTS) of ITER were considered in the assessment: the tritium in the room atmosphere and the activated corrosion products (ACPs) in the cooling loops. In this paper the HX structures are described and two models are selected for the comparison. The working activities needed to keep the HXs in operation are identified and classified. ACPs and tritium concentrations data, evaluated with suitable computer codes or by specific analyses also made by other authors, are used to calculate the dose rate during the various working activities. The final collective dose evaluation for the personnel working at HXs is mainly based on the practice developed at the pressurized water reactors (PWRs) and uses many information and data coming from there. In fact, the ITER heat transfer system (HTS) has many similarities with the PWRs cooling system and the majority of its components are the same as those already used by these plants. Furthermore the working procedures required to inspect and maintain the HXs according to the above approach are presented and discussed. The conclusion of this work includes the results of the comparison between the two HX design models in terms of dose rate and collective dose and points out the benefits of the current design for the ITER staff. Nevertheless, some concern relevant to the inspection and maintenance activities is still present.