ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Pacific Fusion predicts “1,000-fold leap” in performance, net facility gain by 2030
Inertial fusion energy (IFE) developer Pacific Fusion, based in Fremont, Calif., announced this morning that it is on target to achieve net facility gain—more fusion energy out than all energy stored in the system—with a demonstration system by 2030, and backs the claim with a technical paper published yesterday on arXiv: “Affordable, manageable, practical, and scalable (AMPS) high-yield and high-gain inertial fusion.”
Micah D. Lowenthal, Ehud Greenspan, Ralph Moir, William E. Kastenberg, T. Kenneth Fowler
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 619-628
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963683
Articles are hosted by Taylor and Francis Online.
The methods of industrial ecology have been applied to the selection of a high-Z material for indirect-drive targets in the HYLIFE-II reactor. We quantify physical, chemical, and radiological impacts, rate the social-welfare impacts, and identify trends in the economic dimensions of the material selection. Early accident dose, the waste disposal rating, life-cycle volume, gamma dose rate, and resource availability are all considered. Four high-Z materials are considered: Ta, W, Hg, and Pb. A new activation module has been developed to accurately account for the complex activation scenarios of target materials. We explore a range of recycling scenarios and the results of these activation calculations are translated into the indices mentioned above. The recycling scenario can be modified to reduce accident hazards, disposal hazards, maintenance hazards, or fiscal expenditures, but different hazards or costs suggest different recycling scenarios are preferable. The IE methodology and examples of results are presented and areas for further study are identified.