ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Micah D. Lowenthal, Ehud Greenspan, Ralph Moir, William E. Kastenberg, T. Kenneth Fowler
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 619-628
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963683
Articles are hosted by Taylor and Francis Online.
The methods of industrial ecology have been applied to the selection of a high-Z material for indirect-drive targets in the HYLIFE-II reactor. We quantify physical, chemical, and radiological impacts, rate the social-welfare impacts, and identify trends in the economic dimensions of the material selection. Early accident dose, the waste disposal rating, life-cycle volume, gamma dose rate, and resource availability are all considered. Four high-Z materials are considered: Ta, W, Hg, and Pb. A new activation module has been developed to accurately account for the complex activation scenarios of target materials. We explore a range of recycling scenarios and the results of these activation calculations are translated into the indices mentioned above. The recycling scenario can be modified to reduce accident hazards, disposal hazards, maintenance hazards, or fiscal expenditures, but different hazards or costs suggest different recycling scenarios are preferable. The IE methodology and examples of results are presented and areas for further study are identified.