ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
William J. Carmack, Galen R. Smolik, Robert A. Anderl, Robert J. Pawelko, Patricia B. Hembree
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 604-608
Safety and Environment (Poster Session) | doi.org/10.13182/FST98-A11963680
Articles are hosted by Taylor and Francis Online.
The INEEL has analyzed a variety of dust samples from operating experimental tokamaks: General Atomics' DIII-D, Massachusetts Institute of Technology's Alcator CMOD, and Princeton's TFTR. These dust samples were collected and analyzed because of the importance of dust to the safety of future fusion power plants and ITER. The dust may contain tritium, be activated, be chemically toxic, and chemically reactive. The INEEL has carried out numerous characterization procedures on the samples yielding information useful both to tokamak designers and to safety researchers. Two different methods were used for particle characterization: optical microscopy (count based) and laser based volumetric diffraction (mass based). Surface area of the dust samples was measured using Brunauer, Emmett, and Teller, BET1, a gas adsorption technique.
The purpose of this paper is to present the correlation between our particle size measurements and our surface area measurements for tokamak dust.