ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. Koizumi, M. Nakahira, K. Oka, Y. Itou, H. Takahashi, E. Tada, K. Ioki, G. Johnson, M. Onozuka, Y. Utin, G. Sannazzaro, F. Elio, K. Takahashi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 586-590
International Thermonuclear Experimental Reactor (ITER) (Poster Session) | doi.org/10.13182/FST98-A11963677
Articles are hosted by Taylor and Francis Online.
Fabrication of a full-scale sector model of the ITER vacuum vessel, which was initiated in 1995 as one of the Large Seven ITER R&D Projects, was completed in September 1997. The full-scale sector model corresponds to an 18° toroidal sector, is composed of two 9° sectors, Sector A and B, which are spliced at the port center according to the current ITER design. In order to satisfy tight manufacturing tolerances of ± 5 mm and to assure the structural integrity of a double-walled structure, a combination of Gas Tungsten Arc (TIG)/Electron Beam (EB) welding and TIG/Gas Metal Arc (MIG) welding were adopted for Sector-A and B, respectively. Although the different fabrication procedures and welding techniques were employed for the fabrication, both sectors have successfully satisfied the dimensional accuracy of ± 3 mm for the total height, total width and total wall thickness. After the completion of fabrication, both sectors were shipped to the test site in Japan Atomic Energy Research Institute (JAERI) and assembly test was begun in October 1997. The first demonstration test of automatic narrow gap TIG welding of the field joints between sectors was successfully completed at the end of May 1998. This paper outlines the design and fabrication procedures and describes the results of the fabrication and assembly test of Sector A and B.