ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
H. Y. Khater, M. E. Sawan
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 581-585
International Thermonuclear Experimental Reactor (ITER) (Poster Session) | doi.org/10.13182/FST98-A11963676
Articles are hosted by Taylor and Francis Online.
A detailed three-dimensional model (3-D) has been developed for the divertor cassette in the ITER design. The layered configurations of the dome PFC and vertical targets were modeled accurately with the front tungsten layer modeled separately. 3-D neutronics calculations have been performed to determine the detailed spatial distribution of the neutron flux in the divertor cassette. A detailed activation analysis has been performed for zones representing the different critical components of the divertor cassette. The calculations have been performed for two operational scenarios. Special attention has been given to the top 1 cm tungsten layer of the divertor dome. The radioactivity generated in the tungsten layers of the divertor is mostly dominated by W during the first day after shutdown. The GlidCop copper and 316 SS-LN parts of the divertor also generated considerable levels of activity and decay heat. Nevertheless, the analysis showed that the tungsten Plasma Facing Component (PFC) is clearly the most critical part of the divertor from the decay heat generation point of view.