ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Henry Chiu
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 564-567
Plasma Engineering (Poster Session) | doi.org/10.13182/FST98-A11963673
Articles are hosted by Taylor and Francis Online.
The neutral beam systems of DIII-D, a National Fusion Facility at General Atomics, are used both for heating the plasma, and as tools for plasma diagnostics. The spatial distribution (profile) and energy of the beam is used in the absolute calibration of both the Charge Exchange Recombination (CER) and Motional Stark Effect (MSE) diagnostics. The CER diagnostic is used to make spatially and temporally resolved measurements of ion temperature and poloidal and toroidal rotational velocities. These measurements are made by visible spectroscopy of the Doppler shifted He II (468.6 nm), C VI (529.1 nm) and B V(494.5 nm) spectral lines, excited by the charge exchange recombination events between the plasma ions and the beam neutrals. As such, the spatial distribution of the beam is needed for an absolute calibration of the CER diagnostic. The MSE diagnostic measures the internal poloidal field profile in the plasma. MSE measures the polarization angle of the Stark broadned neutral beam Dα emission due to the Vbeam × B motional electric field. Again, the spatial profile of the neutral beam is needed for the absolute calibration of the MSE diagnostic.
In the past, the beam spatial profile used in these calibrations was derived from beam divergence calculations and IR camera observations on the tokamak inboard target tiles. Two experimental methods are now available to better determine the beam profile. In one method, the Doppler shifted Dα light from the energetic neutrals are measured, and the full-width at half-maximum (FWHM) of the beam can be inferred from the measured divergence of the Dα light intensity. The other method for determining the beam profile uses the temperature gradients measured by the thermocouples mounted on the calorimeter. A new iterative fitting routine for the measured thermocouple data has been developed to fit theoretical models on the dispersion of the beam. The results of both methods are compared, and used to provide a new experimental verification of the beam profile.