ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
T. Hayashi, T. Suzuki, M. Yamada, M. Nishi
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 510-514
Fueling and Tritium Handling Technology (Poster Session) | doi.org/10.13182/FST98-A11963663
Articles are hosted by Taylor and Francis Online.
The accountancy of tritium stored in the Zirconium-Cobalt (ZrCo) bed with 25 g of tritium storage capacity has been investigated by “in-bed” gas flowing calorimetric method for a few years. This type of calorimetry uses the temperature raise of helium (He) gas circulated through a secondary coil line installed in the ZrCo tritide. Recently, the basic calorimetric characteristics was demonstrated well within 1 % accuracy of the ITER requirement using 22 g of tritium under actual storage system conditions, such as hydrogenation-dehydrogenation of tritium, long-term storage (3He accumulation inside of tritide vessel), and DT mixture storage. Based on the experimental data, a 100 g of tritium storage bed (ITER size) was designed and its calorimetric performance was discussed.