ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lester M. Waganer
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 496-502
Nonelectrical Applications | doi.org/10.13182/FST98-A11963661
Articles are hosted by Taylor and Francis Online.
For several decades, the international fusion community has had a goal of using a high quality fusion plasma for central station electrical power generation. Continued progress has been made toward the ultimate goal of high quality fusion plasmas with good confinement, mainly in tokamak experimental reactors. However, the commitment to begin construction of an engineering test reactor has not been made. One of the underlying reasons for delaying this large commitment is the lack of favorable economic projections for a fusion-generated cost of electricity1.
Even though the cost of fusion fuel is very inexpensive, the plant capital cost is very expensive, which significantly increases the cost of electricity. The only new electric generating plants currently being purchased in the U.S. are gas turbine units, because they are relatively inexpensive, can be brought on line quickly, and are fueled with low-cost, abundant natural gas. Existing coal and fossil plants are being used to the maximum extent possible. New, capital-intensive, electric-generating plants are not being considered for the near future, even though there is a growing awareness of the resource depletion and environmental impact of using hydrocarbon fuels.
It is time to step back and reconsider all the products fusion can provide as an inexhaustible energy source. Additional products, other than generation of electrical power, may have more benefits and fewer risks, especially in the near term.
A complete set of fusion products was investigated to examine common categories of applications and markets served by these products. An evaluation methodology was developed to assess which applications might be attractive in terms of market potential, environmental considerations, economic impact, risk, and public perception. This methodology was used to assess the proposed applications. The results indicated that several applications might be promising products for the fusion energy source.