ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
E.T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 489-495
Nonelectrical Applications | doi.org/10.13182/FST98-A11963660
Articles are hosted by Taylor and Francis Online.
The ST-VNS devices designed for testing and developing fusion power blanket may offer a unique opportunity for near-term, non-electric applications:
-A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.-A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.-The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.
A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.
A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.
The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.