ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
E.T. Cheng
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 489-495
Nonelectrical Applications | doi.org/10.13182/FST98-A11963660
Articles are hosted by Taylor and Francis Online.
The ST-VNS devices designed for testing and developing fusion power blanket may offer a unique opportunity for near-term, non-electric applications:
-A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.-A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.-The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.
A minimum size, MW level, plasma based 14 MeV neutron source can be very attractive for neutron science applications such as neutron and gamma radiography, and isotope production.
A 70–250 MW level ST-VNS can provide neutrons to drive a sub-critical fission assembly to destroy the actinides discharged from about 10–30 light water reactors and to produce power. A further reduction of long-term radiological hazard from fission power plants can be assured when additional 1,000 – 3,000 MW fusion reactors are developed in the future to transmute the long-lived fission products, Tc and I.
The ST-VNS device also offers a possibility to produce tritium for industrial and defense applications. A 300 MW spin-off device is capable of producing an excess tritium of 2 kg annually, when a conservative overall tritium breeding ratio of 1.2 and 60% availability are assumed.