ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Manfred Roedig, Reiner Duwe, Jochen Linke, Guenther Pott, Bernhard Wiechers
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 464-468
Plasma Facing Components Technology | doi.org/10.13182/FST98-A11963656
Articles are hosted by Taylor and Francis Online.
In order to study degradation effects of neutrons on plasma-facing materials and joints, actively-cooled beryllium and CFC samples were irradiated in the High Flux Reactor in Petten up to 0.35 dpa at 350 and 700°C. Later, these samples were tested by means of an electron beam facility under static and cyclic heating conditions. The heat removal efficiency and the thermal fatigue behavior of these samples were compared to those of corresponding non-irradiated samples. A significant increase of surface temperature was observed for all samples, due to a reduced thermal conductivity of the CFC materials after neutron irradiation. This effect is less distinctive for samples irradiated at the higher temperature. Long term fatigue tests with 1000 heating cycles at 15 MW/m2 did not create any failure of the plasma-facing material or the bond layer of the tested mock-ups. Similar experiments have been performed with brazed beryllium-copper mock-ups. Flat tile mock-ups with an S65 C armor on a CuCrZr heat sink were loaded up to 1000 cycles at a power density of 7 MW/m2 without detachment of tiles.