ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. K. Combs, L. R. Baylor, C. R. Foust, M. J. Gouge, T. C. Jernigan, S. L. Milora, J-F Artaud, A. Géraud
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 419-424
Plasma Fueling, Heating, and Current Drive | doi.org/10.13182/FST98-A11963649
Articles are hosted by Taylor and Francis Online.
High-speed injection of pellets, composed of frozen hydrogen isotopes and multimillimeter in size, is commonly used for core fueling of magnetically confined plasmas for controlled thermonuclear fusion research. Straight guide tubes have typically been used to transport/deliver pellets from the acceleration device to the outside, or magnetic low-field side, of the torus/plasma (distance of −5 to 10 m for most installations). Recently, alternative pellet injection schemes have been used in plasma fueling experiments, including inside launch from the magnetic high-field side on ASDEX-U and top launch (vertically downward) on Tore Supra and DIII-D. These schemes require the use of curved guide tubes in which the pellets are subjected to stresses from centrifugal and impact forces. Thus, with curved guide tubes the speed at which intact pellets can be delivered reliably to the plasma is limited. In impact experiments on flat plates, it was found that deuterium (D2) pellets can survive single collisions at normal velocities in the range 20 to 35 m/s. Several series of tests with various curved guide tube configurations have been carried out, showing that intact pellets can be reliably delivered at speeds of several hundreds of meters per second. The experimental data are summarized and discussed. Also, a model is under development at Tore Supra for predicting these phenomena, and preliminary comparisons with the data are discussed.