ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
D. Lousteau, K. Ioki, L. Bruno, A. Cardella, F. Elio, M. Hechler, T. Kodama, A. Lodato, D. Loesser, N. Miki, K. Mohri, R. Raffray, M. Yamada
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 384-389
International Thermonuclear Experimental Reactor (ITER) | doi.org/10.13182/FST98-A11963644
Articles are hosted by Taylor and Francis Online.
The ITER blanket system removes the surface heat flux from the plasma and from bulk heating by the neutrons, reduces the activity in the vacuum vessel (W) structural material to the level allowable to ensure vessel reweldability for the ITER fluence goal and, in combination with the vacuum vessel, protects the superconducting coils and other ex-vessel components from excessive nuclear heating and radiation damage. The blanket system contributes with its eddy currents to the passive stabilization of the plasma motion. It minimizes the effects of electromagnetic loads on the VV due to plasma disruptions, and provides a well defined load path to the VV for net vertical and horizontal loads arising from vertical displacement events (VDE's). The system is designed to allow the possibility of replacing the shield with a breeding blanket, within the same dimensional, maintenance, and coolant constraints, to provide the tritium to meet the technical objectives of the Enhanced Performance Phase.
The basic blanket system concept as well as the arrangement and function of its components is essentially unchanged from that established in 19951. However, as discussed in this paper, the design of each component has progressed significantly as a result of the detail design and technical analysis efforts of the last two years. The main components of the blanket system are:
• A back plate: a structure comprising a double wall shell that supports the first wall/shield modules and routes the coolant water to them.
• First wall/shield modules: comprising a plasma facing first wall (FW) section, and a shielding (or later breeding) section. Primary wall and baffle modules are distinguishable by the function of their FW.
• Limiters: define the plasma boundary during plasma start-up and shutdown and are located in equatorial ports.
• Flexible connectors, electrical straps, and branch pipes: the remote handling compatible structural, electrical, and cooling connections between the modules and back plate.
• Filler shields: shielding permanently mounted to the back plate in the triangular gaps between FW/shield modules.
The system will use austenitic stainless steel 316L(N)-IG (ITER Grade) as the primary structural material cooled by water with inlet conditions of 3.8 MPa and 140°C. The plasma facing surface of the FW will be beryllium except the lower region of the baffles, where tungsten is used. The electrical straps and heat sink layer in the FW will be copper alloy. A titanium alloy is the prime candidate material for the flexible connectors.