ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
N. A. Uckan, D. E. Post, J. C. Wesley, ITER JCT, ITER Home Teams, ITER Physics Expert Groups
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 371-376
International Thermonuclear Experimental Reactor (ITER) | doi.org/10.13182/FST98-A11963642
Articles are hosted by Taylor and Francis Online.
The physics knowledge relevant to the design of a reactor-scale tokamak—the ITER Physics Basis—has recently been assessed by the ITER JCT, the ITER Home Teams, and the ITER Physics Expert Groups. Physics design guidelines and methodologies for projecting plasma performance in ITER and reactor tokamaks are developed from extrapolations of various characterizations of the database for tokamak operation and of the understanding that its interpretation provides. Both “conventional” and “advanced tokamak” operating modes are considered. The overall device parameters for ITER are found to be consistent with these guidelines. The plasma performance attainable in ITER is affected by many physics issues, including energy confinement, L-to H and H-to-L-mode power transition thresholds, MHD stability/beta limit, density limit, disruptions, helium removal, impurity content, etc. Design basis and guidelines are provided in each of these areas, along with sensitivities and/or uncertainties involved.