ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Yasushi Seki, Isao Aoki, Shuzo Ueda, Satoshi Nishio, Ryoichi Kurihara, Takashi Tabara
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 353-357
Fusion Economics and Reactor Studies | doi.org/10.13182/FST98-A11963639
Articles are hosted by Taylor and Francis Online.
The radwaste generated from three fusion power reactors using ferritic steel, V-alloy and SiC/SiC composite were classified into low level waste (LLW) which can be disposed by shallow land burial (SLB) and medium level waste (MLW) which cannot be disposed by SLB because one or more of the radionuclides exceeds the derived limiting concentration value. When the recently developed FENDL/A2.0 library is used, the SLB fraction became 91% for ferritic steel, 36% for V-alloy and 65% for SiC/SiC. It is found that if the Nb impurity content in V-. alloy and N impurity content in SiC/SiC could be reduced to 1/100 (0.15 Wt.ppm) and 1/20 (5times10−4 Wt.%), respectively, the SLB fraction becomes nearly 100% for both materials. On the other hand, the alloying element W content needs to be reduced to further increase the SLB fraction in case of the ferritic steel F82H.