ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J.C. Kellogg, S.E. Bodner, S.P. Obenschain, J.D. Sethian
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 319-325
Inertial Fusion Energy | doi.org/10.13182/FST98-A11963634
Articles are hosted by Taylor and Francis Online.
Previous reactor studies indicate that a practical laser fusion power plant will require target gains of about 100. This level of energy gain appears possible with direct-drive targets now being designed and optimized at the Naval Research Laboratory (NRL). With direct-drive, the light is absorbed directly on the pellet shell, thereby maximizing the coupling efficiency. The current status of NRL's high gain target designs will be presented.
To obtain sufficiently high target gains for a fusion reactor, NRL has had to take advantage of three optimizations. First, the laser beam illumination on the pellet has to be extremely uniform. High-mode beam nonuniformities in the range of 0.2% rms are required, along with low-mode nonuniformities of about 1%. The equivalent non-uniformity levels have already been achieved, in planar geometry, with NRL's KrF laser. Second, the rocket efficiency has to be maximized by depositing the laser energy deeply into the pellet. KrF, with 1/4 micron wavelength light, deposits at a high plasma density. Third, the target gain is optimized by “zooming” the laser beam inward during the implosion, thereby matching the laser spot size to the decreasing pellet diameter. This optical zooming is easily implemented on KrF lasers.
Although the laser-target physics leads us to KrF, there are several engineering challenges in developing a laser of this type with sufficient energy, rep-rate, reliability, and economy for a practical reactor. Some of these challenges are the lifetime of the emitter and pressure foil in the electron-beam pumped amplifiers, the ability to clear the laser gas between pulses without sacrificing beam quality, and the overall efficiency of the system. Technologies and techniques which might meet these challenges have been partially developed elsewhere, but they are not necessarily in a parameter range appropriate for laser fusion, and they have yet to be integrated into a single system. We have a conceptual design for a 400-Joule, 5-Hz KrF laser which would serve as a test bed for these technologies.
There are also engineering challenges in the design of a target chamber for a laser fusion reactor, including the protection of the first wall from the transient x-ray flux, and the final grazing incidence metal mirror which will be in direct line of sight of high energy neutrons from the burning pellet.