ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Pacific Fusion predicts “1,000-fold leap” in performance, net facility gain by 2030
Inertial fusion energy (IFE) developer Pacific Fusion, based in Fremont, Calif., announced this morning that it is on target to achieve net facility gain—more fusion energy out than all energy stored in the system—with a demonstration system by 2030, and backs the claim with a technical paper published yesterday on arXiv: “Affordable, manageable, practical, and scalable (AMPS) high-yield and high-gain inertial fusion.”
A S Kaye, JET Team
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 308-316
Fusion Topical Opening Session | doi.org/10.13182/FST98-A11963633
Articles are hosted by Taylor and Francis Online.
During 1997, JET carried out a campaign of operation in deuterium/tritium. A total of 99 grams of tritium was admitted to the torus using gas puffing and neutral beam injection. With a site inventory of 20 grams of tritium, this required repeated re-processing of the gas recovered from the torus using the JET active gas handling plant. Around 220 tokamak pulses were carried out with tritium concentrations above 40%, during which a total of 2.5.1020 14 MeV neutrons were produced. Emphasis was placed on re-producing conditions close to those anticipated in the ITER experimental fusion reactor, in particular maintaining dimensionless parameters important in the physics of confinement. The experimental program included high fusion yield hot-ion and optimized shear scenarios in particular for the study of alpha particle physics. Achievements included a maximum fusion power of 16 MW in hot-ion H-mode at a Q of 0.6; first production of DT power (8 MW) in optimized shear; a Q of 0.2 for 5 seconds in an ITER relevant steady state ELMy H-mode at a fusion power of 4 MW; a Q of 0.22 in RF only discharges; and observation of alpha particle heating. Tritium was found to give a marked reduction in the H-mode threshold and an improvement in edge pedestal stability but no change in global confinement. The optimized shear scenario required re-optimization in tritium, only partially achieved. The results are generally consistent with ignition in ITER. Retention of tritium in the torus is much higher than anticipated and tritium recovery during the clean-up campaign was modest. The divertor tiles have since been replaced remotely with no personnel access to the torus. Tritium release and the dose to personnel have been well within the low approved levels.
JET has successfully completed this tritium campaign, producing both physics and technical data invaluable to the design of next step devices. The results in particular demonstrate the importance of operations in tritium in reliably predicting the performance of future machines.