ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
P.R. Thomas, V.P. Bhatnagar
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 407-424
Special Lectures | doi.org/10.13182/FST98-A11947033
Articles are hosted by Taylor and Francis Online.
JET experimental results directly relevant to ITER design are presented. From recent experiments in DT mixtures varying from 100:0 to 10:90, it is inferred that an inverse mass dependence should be included in the H-mode power threshold scaling. Using ITER similarity experiments, the global energy confinement time in JET discharges with type I ELMs is found to be consistent with the gyro-Bohm physics form which has no dependence on plasma β. This form has a weak negative mass dependence but a stronger density dependence than the ITERH93-P scaling. Using the JET MkIIa pumped divertor with N2 seeding, ITER-relevant highly radiative regimes (PR up to 75%) accompanied by type III ELMs have been studied. It is found that the confinement degrades progressively with increasing radiative power fraction. Power loading of divertor tiles with type I ELMs appears to be excessive with NBI whereas it is less of a concern with ICRH. Preliminary assessement of the ITER reference second harmonic (2ɷCT) ICRH scenario with and without the addition of a small amount of He3 is also presented. High performance optimised shear discharges with potentially ‘well aligned’ bootstrap current scenarios consistent with ITER-relevant steady-state operation have also been studied. Internal transport barriers featuring peaked plasma profiles have been demonstrated in DT plasmas in JET. Preliminary results of α-particle driven toroidal Alfven eigenmodes (TAEs) in the ‘after-glow’ of NBI heated 50:50 DT plasmas are also presented.