ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
P.R. Thomas, V.P. Bhatnagar
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 407-424
Special Lectures | doi.org/10.13182/FST98-A11947033
Articles are hosted by Taylor and Francis Online.
JET experimental results directly relevant to ITER design are presented. From recent experiments in DT mixtures varying from 100:0 to 10:90, it is inferred that an inverse mass dependence should be included in the H-mode power threshold scaling. Using ITER similarity experiments, the global energy confinement time in JET discharges with type I ELMs is found to be consistent with the gyro-Bohm physics form which has no dependence on plasma β. This form has a weak negative mass dependence but a stronger density dependence than the ITERH93-P scaling. Using the JET MkIIa pumped divertor with N2 seeding, ITER-relevant highly radiative regimes (PR up to 75%) accompanied by type III ELMs have been studied. It is found that the confinement degrades progressively with increasing radiative power fraction. Power loading of divertor tiles with type I ELMs appears to be excessive with NBI whereas it is less of a concern with ICRH. Preliminary assessement of the ITER reference second harmonic (2ɷCT) ICRH scenario with and without the addition of a small amount of He3 is also presented. High performance optimised shear discharges with potentially ‘well aligned’ bootstrap current scenarios consistent with ITER-relevant steady-state operation have also been studied. Internal transport barriers featuring peaked plasma profiles have been demonstrated in DT plasmas in JET. Preliminary results of α-particle driven toroidal Alfven eigenmodes (TAEs) in the ‘after-glow’ of NBI heated 50:50 DT plasmas are also presented.