ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Jürgen Uhlenbusch
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 345-354
Diagnostics | doi.org/10.13182/FST98-A11947027
Articles are hosted by Taylor and Francis Online.
The objective of laser-aided edge diagnostics is closely connected with plasma wall interaction processes. Thus at first a short description of the plasma regions near first wall, limiter or divertor and the most important quantities and processes to be evaluated there is given. A very important technique to measure electron densities and temperatures in the edge is Thomson scattering. Collective scattering represents a useful method to quantify fluctuations of electron density and their relation to particle and energy transport. To detect neutral particles and ions after their release from the wall and during recycling phases laser induced fluorescence (LIF) is a well established technique. Future applications of laser diagnostics as two-photon scattering and coherent anti-Stokes Raman scattering (CARS) are discussed.
IV. SUMMARY AND CONCLUSION
The most important methods of laser aided edge diagnostics are introduced and a few results of measurements summarized. While Thomson scattering on tokamaks seems to be now a matter of routine with high reliability, LIF techniques still underly restrictions because nearly each atomic species requires its own laser system, often in the VUV. Nevertheless, some progress can be observed with respect to the bandwidth, timing range, wavelength, power, reproducibility, repetition rate etc. It is anticipated that excitation by two-photon absorption develops more and more to a sensitive technique as this is expected from four-wave mixing techniques.