ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Karl H. Spatschek
Fusion Science and Technology | Volume 33 | Number 2 | March 1998 | Pages 50-59
Basic Theory and Fusion Devices | doi.org/10.13182/FST98-A11946994
Articles are hosted by Taylor and Francis Online.
In this overview, the main arguments for a kinetic description of a classical non-relativistic many particle system are reviewed. First, the need and strategy for a kinetic description of plasma particles is discussed. The Vlasov, the Landau-Fokker-Planck, and the Balescu-Lenard equations are presented as the most useful kinetic equations for the particle distribution functions. It is shown that a linearization of the initial value problem can already give interesting insights into the dynamic behaviors. In many cases a reduction to a plasmadynamic (fluid) description is appropriate, and popular truncations are summarized. Finally, the basic methods for a kinetic description of waves are presented. When some wave excitations are driven unstable and the collective motion of particles dominates, the wave-kinetic equations will be the appropriate dynamical equations. It is shown that spectra of the Kolmogorov-Obukhov type are exact stationary solutions of the latter.