ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Donald L. Smith, Itacil C. Gomes, Robert C. Ward, Yujiro Ikeda, Yoshitomo Uno, Fujio Maekawa, Anatoly A. Filatenkov
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 1049-1052
Fusion Blanket and Shield Technology | doi.org/10.13182/FST96-A11963075
Articles are hosted by Taylor and Francis Online.
Water is activated in a fusion environment by the 16O(n,p)16N reaction. In this work nuclear responses in the magnets, induced by gamma rays from the activated cooling water, for the current design of the International Thermonuclear Experimental Reactor (ITER), are calculated with a detailed Monte Carlo model of the chimney region through which the cooling pipes leave the machine. It is found that, despite a significant dose, the nuclear responses induced by these gamma-rays do not pose an obvious threat to the operation of the magnets.