ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D.J. Senor, D.J. Trimble, G.E. Youngblood, G.A. Newsome, J.L. Brimhall, J.J. Woods
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 956-968
Fusion Materials | doi.org/10.13182/FST96-A11963061
Articles are hosted by Taylor and Francis Online.
A variety of SiC-Based fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC (185 EFPD) at a nominal irradiation temperature of 1000°C. The annealed specimens were held at 1010°C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. In general, the results of this study indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon CG possessed a higher tensile strength than Hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon CG exhibited unacceptable irradiation-induced shrinkage. While the irradiation stability of Hi-Nicalon was promising, other fibers with compositions closer to stoichiometric SiC may perform even better. This potential was suggested by the MER99 fiber, which displayed excellent dimensional stability. The principal drawback for the fully crystalline and stoichiometric fibers such as MER99 and Crystalline SiC is their low strength and flexibility caused by high flaw concentrations.