ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D.J. Senor, D.J. Trimble, G.E. Youngblood, G.A. Newsome, J.L. Brimhall, J.J. Woods
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 956-968
Fusion Materials | doi.org/10.13182/FST96-A11963061
Articles are hosted by Taylor and Francis Online.
A variety of SiC-Based fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC (185 EFPD) at a nominal irradiation temperature of 1000°C. The annealed specimens were held at 1010°C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. In general, the results of this study indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon CG possessed a higher tensile strength than Hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon CG exhibited unacceptable irradiation-induced shrinkage. While the irradiation stability of Hi-Nicalon was promising, other fibers with compositions closer to stoichiometric SiC may perform even better. This potential was suggested by the MER99 fiber, which displayed excellent dimensional stability. The principal drawback for the fully crystalline and stoichiometric fibers such as MER99 and Crystalline SiC is their low strength and flexibility caused by high flaw concentrations.