ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Raftopoulos, C. Gentile, P. LaMarche, J. Langford
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 922-925
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963056
Articles are hosted by Taylor and Francis Online.
The Tritium Purification System (TPS) is a hydrogen isotope separation system put into operation within the Tokamak Fusion Test Reactor (TFTR) Tritium Systems. The TPS operates in two stages: extraction of hydrogen isotopes from the TFTR plasma waste effluents via a Palladium/Silver diffuser; and separation of hydrogen isotopes via a multiple-stage cryogenic distillation system.
Commissioning of TPS included: Operational testing at Canadian Fusion Fuels Technology Project (CFFTP) and at Princeton, thorough helium and tritium leakchecks, trial run with a limited tritium inventory (1 kCi), and an integrated systems test using 10 kCi of tritium. The integrated systems test, which was started in April of 1995 took approximately eight months to perform. Several “infant mortality” failures, requiring numerous line breaks into highly contaminated piping, were safely performed. On December 18, 1995 the TPS delivered its first batch of purified tritium product.
This paper provides a brief overview of the TPS design and theory of operation. The focus of this paper is the commissioning, operation, performance and maintenance of the device. Lessons learned in maintenance and repair of the TPS are also addressed.