ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Arthur Nobile, Michael D. Keddy, Richard L. Hemphill
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 916-921
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963055
Articles are hosted by Taylor and Francis Online.
Capability to fill inertial confinement fusion (ICF) targets with DT has recently been established at the Weapons Engineering Tritium Facility (WETF) at Los Alamos National Laboratory (LANL). The target filling system provides DT-filled glass targets for the U.S. National ICF Program. Tritium storage, purification, mixing, analysis, and high pressure capabilities at WETF are used to provide DT at pressures up to 400 atm to a target filling cell that can operate at temperatures to 400 °C. Isotopically pure tritium is obtained from the Tritium Systems Test Assembly at LANL, and typically has purities of 99% tritium or better. At WETF, a palladium-silver diffuser is used for removal of decay 3He from tritium prior to mixing with deuterium. After preparation, DT mixtures are stored in a passivated volume to minimize impurity accumulation from stainless steel. Analysis of tritium and DT mixtures is performed with a quadrupole mass spectrometer/beta scintillation detector system that utilizes an analytical technique previously developed at LANL to provide hydrogen isotope, helium, and impurity analysis. Glass targets are filled in aluminum eggcrates. The target filling cell has been designed to contain two eggcrates while maintaining isothermal conditions across the eggcrates during diffusion filling of targets. Results from a cryogenic condensation technique performed at Lawrence Livermore National Laboratory have confirmed the fill pressures.