ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Takayuki Terai, Akihiro Suzuki, Satoru Tanaka
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 911-915
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963054
Articles are hosted by Taylor and Francis Online.
The 2:1 mixture of LiF and BeF2 (Flibe) is a potential liquid tritium breeding material for fusion reactors, because of low electric conductivity, high chemical stability in air, etc. We have been studying tritium release behavior from Flibe by in-pile tritium release experiment in the fast neutron source reactor “YAYOI” of the University of Tokyo. About 100g of Flibe was utilized for neutron irradiation to produce tritium, and the tritium released from the specimen was swept by making purge gas flowing over the specimen. Tritium release rate increased with elapsed time after the start of irradiation and a steady state was attained in about four hours at 873K in case of H2 purge gas. Released chemical forms of tritium were HT and TF, and their proportions depended not on the kind of container and tubing materials, but on the chemical composition of purge gas and the dehumidification time of specimen at high temperatures. Tritium generated as T+ in Flibe was released by way of two routes; (1) direct release to purge gas as TF and (2) release to purge gas after converted to HT by the isotopic exchange reaction with H2. The reaction rate was controlled by the H2 concentration and F+ potential in the system. In case of high hydrogen concentration and low F+ potential in the system, tritium was released as HT with a relatively high rate. In case of high F+ potential in the system, on the other hand, tritium was released as TF with a low rate.