ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Stephen A. Birdsell, R. Scott Willms, Richard C. Wilhelm
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 905-910
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963053
Articles are hosted by Taylor and Francis Online.
A 2-stage cold (non-tritium) PMR system was tested with the ITER mix* in 61 days of continuous operation. No decrease in performance was observed over the duration of the test. Decontamination factor (DF) was found to increase with decreasing inlet rate. Decontamination factors in excess of 1.4×105 were obtained, but the exact value of the highest DF could not be determined because of analysis limitations.
Results of the 61-day test were used to design a 2-stage PMR system for use in tritium testing. The PMR system was scaled up by a factor of 6 and built into a glovebox in the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory. This system is approximately 1/5th of the expected full ITER scale. The ITER mix was injected into the PMR system for 31 hours, during which 4.5 g of tritium were processed. The 1st stage had DF =200 and the 2nd stage had DF=2.9×106. The overall DF=5.8×108, which is greater than ITER requirements.