ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ken Tomabechi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 853-863
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963044
Articles are hosted by Taylor and Francis Online.
Requirements of tritium breeding ratio and the initial inventory of tritium for early fusion power reactors were investigated with a calculation model. The results of calculated time-dependence of tritium inventory were examined, in particular from the following three points of view; the doubling time of tritium inventory in the storage system to provide the initial inventory of the next plant, the recovery time in which the tritium inventory in the storage system recovers to the initial value and the minimum tritium storage required during the operation. The following limits were adopted to evaluate the results, i.e., the doubling time shorter than 3 years, the recovery time shorter than 1 year and the minimum storage larger than the tritium for 50 days bum up. For a reference case, which assumes reasonable performance parameters of the fuel processing subsystems, the requirements for the tritium breeding ratio and the initial tritium inventory were estimated to be 1.10 and 27.6 kg, respectively. If a poor tritium processing system is assumed, the requirements become inevitably higher. On the other hand, mitigation of the requirements is not conspicuous even with a good processing system. The obtained results suggest that the high performance tritium processing is indispensable, but still insufficient for achievement of tritium self-sufficiency. From the point of view of tritium fuel supply, a blanket system with high tritium breeding ratio is also indispensable in early stage of fusion power reactor development, in order to introduce fusion reactors at a reasonable pace.