ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ken Tomabechi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 853-863
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963044
Articles are hosted by Taylor and Francis Online.
Requirements of tritium breeding ratio and the initial inventory of tritium for early fusion power reactors were investigated with a calculation model. The results of calculated time-dependence of tritium inventory were examined, in particular from the following three points of view; the doubling time of tritium inventory in the storage system to provide the initial inventory of the next plant, the recovery time in which the tritium inventory in the storage system recovers to the initial value and the minimum tritium storage required during the operation. The following limits were adopted to evaluate the results, i.e., the doubling time shorter than 3 years, the recovery time shorter than 1 year and the minimum storage larger than the tritium for 50 days bum up. For a reference case, which assumes reasonable performance parameters of the fuel processing subsystems, the requirements for the tritium breeding ratio and the initial tritium inventory were estimated to be 1.10 and 27.6 kg, respectively. If a poor tritium processing system is assumed, the requirements become inevitably higher. On the other hand, mitigation of the requirements is not conspicuous even with a good processing system. The obtained results suggest that the high performance tritium processing is indispensable, but still insufficient for achievement of tritium self-sufficiency. From the point of view of tritium fuel supply, a blanket system with high tritium breeding ratio is also indispensable in early stage of fusion power reactor development, in order to introduce fusion reactors at a reasonable pace.