ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ken Tomabechi
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 853-863
Fuel Cycle and Tritium Technology | doi.org/10.13182/FST96-A11963044
Articles are hosted by Taylor and Francis Online.
Requirements of tritium breeding ratio and the initial inventory of tritium for early fusion power reactors were investigated with a calculation model. The results of calculated time-dependence of tritium inventory were examined, in particular from the following three points of view; the doubling time of tritium inventory in the storage system to provide the initial inventory of the next plant, the recovery time in which the tritium inventory in the storage system recovers to the initial value and the minimum tritium storage required during the operation. The following limits were adopted to evaluate the results, i.e., the doubling time shorter than 3 years, the recovery time shorter than 1 year and the minimum storage larger than the tritium for 50 days bum up. For a reference case, which assumes reasonable performance parameters of the fuel processing subsystems, the requirements for the tritium breeding ratio and the initial tritium inventory were estimated to be 1.10 and 27.6 kg, respectively. If a poor tritium processing system is assumed, the requirements become inevitably higher. On the other hand, mitigation of the requirements is not conspicuous even with a good processing system. The obtained results suggest that the high performance tritium processing is indispensable, but still insufficient for achievement of tritium self-sufficiency. From the point of view of tritium fuel supply, a blanket system with high tritium breeding ratio is also indispensable in early stage of fusion power reactor development, in order to introduce fusion reactors at a reasonable pace.