ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
S. Bernabei, C. Brunkhorst, D. Ciotti, F. Dahlgren, R. Daugert, L. Dudek, E. Fredd, N. Greenough, J. Hosea, R. Kaita, D. Loesser, M. McCarthy, E. Perry, S. Ramakrishnan, J. R. Wilson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 820-824
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963038
Articles are hosted by Taylor and Francis Online.
A TFTR Lower Hybrid Current Drive Project has been undertaken to scope out the design and the details of construction of a Lower Hybrid (LH) system to provide up to 4 megawatts of 4.6 GHz rf source power through a four-array coupler to TFTR. The main purpose of the this would be to provide TFTR with a current profile control system. The first phase of the project would consist of relocating the existing rf sources and associated equipment of the 2MW system from the PBX-M device as well as designing, fabricating and installing a vacuum vessel interface on TFTR and a new power splitter, coupler and waveguide would have to be implemented to interface with TFTR. Several novel features have been added to the system to adapt it to the requirements of the TFTR experiment. The second phase of the project would consist of installing additional 2 MW power sources from MIT and power supplies from LLNL.