ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S. Bernabei, C. Brunkhorst, D. Ciotti, F. Dahlgren, R. Daugert, L. Dudek, E. Fredd, N. Greenough, J. Hosea, R. Kaita, D. Loesser, M. McCarthy, E. Perry, S. Ramakrishnan, J. R. Wilson
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 820-824
Plasma Fuelingand Heating, Control, and Currentdrive | doi.org/10.13182/FST96-A11963038
Articles are hosted by Taylor and Francis Online.
A TFTR Lower Hybrid Current Drive Project has been undertaken to scope out the design and the details of construction of a Lower Hybrid (LH) system to provide up to 4 megawatts of 4.6 GHz rf source power through a four-array coupler to TFTR. The main purpose of the this would be to provide TFTR with a current profile control system. The first phase of the project would consist of relocating the existing rf sources and associated equipment of the 2MW system from the PBX-M device as well as designing, fabricating and installing a vacuum vessel interface on TFTR and a new power splitter, coupler and waveguide would have to be implemented to interface with TFTR. Several novel features have been added to the system to adapt it to the requirements of the TFTR experiment. The second phase of the project would consist of installing additional 2 MW power sources from MIT and power supplies from LLNL.