ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Satoshi Suzuki, Kazuyoshi Sato, Masanori Araki, Kazuyuki Nakamura, Masayuki Dairaku, Kenji Yokoyama, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 793-797
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963033
Articles are hosted by Taylor and Francis Online.
Since the thermal loads causes deformation of the divertor plate, it is one of the critical issues to develop support structures which can suppress the deformation within an allowable tolerance. Slide support structures and rigid support structures have been proposed for the ITER divertor plate design. Advantage of the fully rigid support structure is 1) the thermal deformation can almost fully be suppressed, 2) the fabrication process becomes simpler than the slide support structures. However, stresses/strains of the divertor plate with the rigid support structure are seemed to be much higher than those of the slide support structures. To evaluate the thermal fatigue behavior for the rigid support structure, the authors have developed a 1 m long divertor mock-up and have performed the thermal cycling experiments of the mock-up. The mock-up consists of 36 armor tiles, a soft copper (OFHC-Cu) heat sink, and an OFHC-Cu cooling tube. The armor tiles were made of a unidirectional Carbon Fiber Reinforced Carbon composite material which has high thermal conductivity perpendicular to the coolant flow direction. The saddle-shaped armor tiles were brazed onto the heat sink with a silver braze. The thermal cycling experiment was performed in an area of 25 × 50 mm2 at an incident heat flux of 25 MW/m2 for a pulse duration of 10 s. As a result, a water leakage from the cooling tube between the heated armor tiles occurred at 1247th thermal cycle. In the scanning electron microscope (SEM) observation, the striation which is typical for fatigue cracking was clearly observed at the fracture surface of the cooling tube. The 3-D finite element analysis for the simulation of the experiment was also performed, and the large strain amplitude was found at the heated side of the cooling tube. Therefore, the fatigue cracking of the cooling tube could mainly be attributable to this large strain amplitude. To realize the rigid support structure, more stiffness is required for the structural material of the cooling tube.