ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Satoshi Suzuki, Kazuyoshi Sato, Masanori Araki, Kazuyuki Nakamura, Masayuki Dairaku, Kenji Yokoyama, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 788-792
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963032
Articles are hosted by Taylor and Francis Online.
The divertor plate of next generation tokamak device such as the International Thermonuclear Experimental Reactor (ITER) is subjected to high heat and particle fluxes from the plasma. The armor material of the divertor plate will be damaged by plasma disruptions. Therefore the divertor components are required to be easily repaired or replaced. To realize the easy maintenance of divertor high heat flux components, the thermal bond layer (TBL) concept is the most promising. The TBL is a soft braze material which has a low melting temperature such as lead-based alloys. By using TBL for divertor high heat flux components, the damaged armor tiles are expected to be easily replaceable. Moreover, TBL plays a role of a compliant interlayer to reduce the interfacial thermal stress between the armor tile and the heat sink substrate. The authors have developed and tested Divertor Mock-UPS with lead-based TBL. This paper presents the results of the high heat flux experiments on the Divertor Mock-UPS with the TBL. The mock-up consists of replaceable armor blocks and a permanent substrate which is made of pure copper. The armor block consists of a bonded structure with armor tiles and a copper pivot. The armor blocks are brazed onto the substrate with pure lead. The permanent substrate has parallel cooling tubes which have twisted tape insert to enhance heat transfer. The high heat flux experiments on these mock-ups were carried out at JAERI Electron Beam Irradiation System (JEBIS). For the simulation of normal operation of ITER, the incident heat flux of 5 MW/m2 at a maximum pulse duration of 50 s was loaded; and for the simulation of transient period of ITER, the heat flux of up to 15 MW/m2 at a maximum pulse duration of 10 s was loaded. The thermal performance of the mock-ups was stably sustained against both thermal loads.