ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Toshihisa Hatano, Kazuyoshi Sato, Masayuki Dairaku, Toshimasa Kuroda, Masanori Araki, Hideyuki Takatsu, Satoshi Sato, Kiyoshi Fukaya, Toshimasa Kurasawa, Ikuhide Tokami, Masato Akiba
Fusion Science and Technology | Volume 30 | Number 3 | December 1996 | Pages 752-756
Plasma-Facing Components: Analysis and Technology | doi.org/10.13182/FST96-A11963025
Articles are hosted by Taylor and Francis Online.
A shielding blanket design in a fusion reactor such as ITER (International Thermonuclear Experimental Reactor) has been proposed to be a modular structure integrated with the first wall. In terms of the fabrication, HIP (Hot Isostatic Pressing) method has been proposed for the joining of dispersion strengthened copper (DS-Cu) and type 316L stainless steel (SS316L) at FW. High heat flux tests of HIP bonded DS-Cu/SS316L first wall panel were performed at Particle Beam Engineering Facility in JAERI to investigate its thermo-mechanical performance. They consisted of four test campaigns. The former two campaigns simulated ITER normal operation conditions in terms of the temperature and strain at the HIP bonded interfaces between DS-Cu and SS316L, respectively. The latter two simulated disruption conditions. Under normal heat flux conditions, temperature responses of the first wall panel measured by the thermocouples agreed very well with those predicted by FEM analyses. On the other hand, ejection of a number of small particles from DS-Cu surface was observed during the last campaign with the high heat flux simulating disruptions.